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Abstract

The work reported in this paper questions the relevance of using fractal concept to study liquid primary atomization
process by characterizing the shape of the continuous liquid flow from the nozzle exit to the end of the atomization process.
First, three fractal methods were tested on synthetic images in order to define the best adapted protocol to the objective of
the study. It appeared that the Euclidean distance mapping was the best appropriate method. Second, this technique was
applied to analyze series of images of atomizing liquid flows obtained for several working conditions. This application
demonstrates that atomizing liquid flows are fractal objects and that primary atomization can be reasonably seen as fractal
processes. The appropriateness of fractal concept was also demonstrated by the fact that fractal characteristics such as tex-
tural or structural fractal dimension and inner cutoff scale are physically representative of the process investigated here.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Experimental investigations on the distortion and disintegration of liquid flows evolving in a gaseous envi-
ronment are very much required to improve our knowledge and understanding of liquid spray production. A
rapid overview of the literature in this field shows that although the question of liquid flow distortion has been
theoretically investigated for the past decades (Sirignano and Mehring, 2000), experimental investigations on
primary breakup processes are lacking (Faeth et al., 1995). Primary breakup designates the process of liquid
detachment from the liquid flow surface. This process is important because it initiates the atomization process,
controls the extend of the continuous liquid flow and provides the initial conditions of the dispersed flow
region. Chigier (2005) drew attention to the necessity of studying the breakup region since it is the vital link
between liquid emerging from the nozzle and the fully developed spray. According to him, imaging remains
the sole technique for obtaining information about liquid sheets and jets emerging from nozzles and their
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subsequent breakup and efforts must be made to record, analyze and interpret the breakup process. The work
reported in this paper intends to participate to this effort.

Regardless the working conditions, a continuous liquid stream (that is the liquid flow attached to the
nozzle) that atomizes is a geometric object with a complex boundary. Illustrations of this are available in
Dumouchel (2005). The characteristic features of the ligaments and drops that detach from the flow depend
on the shape of this object. Thus, the shape of the continuous liquid flow appears to be a relevant character-
istic feature of the primary breakup process. In the present work, shapes of atomizing liquid flows are analyzed
using the concept of fractal dimension.

The concept of fractal dimension was first introduced by Kolmogorov in its description of small scale tur-
bulence (Hunt and Vassilicos, 1991) and was then generalized by Mandelbrot (1982). The fractal dimension is
an extension of the Euclidean dimension and allows describing complex boundaries. For a straight line,
Euclidean and fractal dimensions are equal to 1. For a line inscribed in a plane, the fractal dimension varies
from 1 if the line is straight to 2 if the line is so tortuous that it fully covers the whole plane. Fractal dimension
is a measure of the tortuosity, fragmentation or roughness of a surface or a line that is self-similar over a range
of scales, i.e., that presents similar structures when observed at different magnifications. Fractal analysis is
used in different fields of physics and medicine where shapes of objects have to be known. For instance, it
is extensively used to characterize neurons and cells morphology (Caserta et al., 1995; Panico and Sterling,
1995; Smith et al., 1996). In physics, fractal analysis has been widely developed to characterize scalar interface
in turbulent flows (Sreenivasan and Meneveau, 1986; Prasat and Sreenivasan, 1990; Sreenivasan, 1991; Lane-
Serff, 1993). A similar application was due to Chehroudi and Talley (2004) to characterize the boundary of a
liquid spray under several atmospheric conditions. In combustion, it is used to study the shape of turbulent
front flame (Hall et al., 1992) as well as the morphology of soot particles (Kaye, 1989; Köylü et al., 1995).
Another type of application concerns the characterization of spray surface coatings (Guessasma et al.,
2003). Surprisingly, the application of fractal analysis to study the morphology of atomizing liquid flows
has received very little attention. Two approaches must be mentioned.

The first application of fractal analysis to describe the primary breakup process of a liquid flow is due to
Shavit and Chigier (1995) who considered the liquid–gas interface of an air assisted cylindrical liquid jet. They
found that such an interface is locally fractal and that the average local fractal dimension increases, reaches a
maximum and decreases as the distance from the nozzle increases. The local fractal dimension is maximum in
the region where the drop production is the most effective. Shavit and Chigier (1995) also reported that the
maximum local fractal dimension was related to the breakup length and to an average drop diameter. Accord-
ing to the authors, the fractal nature of the interface of air-assisted liquid jets is a consequence of the inter-
action of the air turbulence and its eddy structure with the liquid–gas interface.

The relevance of using fractal analysis to characterize an atomization process was confirmed by a second
investigation recently published (Dumouchel et al., 2005b) and that considered liquid streams issuing from low
injection pressure simplified cavity nozzles. Contrary to the situations examined by Shavit and Chigier (1995),
such atomization processes are characterized by low Weber number revealing the negligible influence of the
aerodynamic forces on the atomization process. It was shown that the interface distortion and drop produc-
tion were initiated by liquid turbulent level and governed by surface tension forces (Dumouchel et al., 2005a).
This second investigation led to similar conclusions as those obtained by Shavit and Chigier (1995).

Fractal analysis may bring another information than the sole fractal dimension. Fractal objects can be
divided in two groups: linear (or ideal) fractals and non-linear (or natural) fractals (Foroutan-pour et al.,
1999; Guessasma et al., 2003). Linear (or ideal) fractals result from an absolute generating process and are
mathematical objects for which the rule of construction is known. The determination of the fractal dimension
is analytical and it can be exactly calculated over a semi-infinite domain. Non-linear (or natural) fractals result
from a statistical generating process. Physical objects, as those enumerated above, fall into this category and
report fractal property in a range of physical cutoff length scales. In atomization, these cutoffs correspond to
the smallest and greatest interface perturbation length scales and constitute interesting characteristics of the
primary atomization process (Shavit and Chigier, 1995; Dumouchel, 2005). However, the determination of
these scales is sensitive to the method used to measure the fractal dimension.

The purpose of the present study is to identify the appropriate technique for the fractal analysis of 2D
atomizing liquid flow images and to show applications. The next section describes the steps that ought to
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be followed in fractal analysis of 2D contours. Section 3 summarizes the experimental visualization technique
and the image analyzing process used to elaborate the 2D contours. In Section 4, several fractal analysis meth-
ods are tested on images of linear fractals paying attention that these images are similar to those of the liquid
flow boundary we want to analyze. These tests will allow a protocol of analysis to be defined. The application
of this protocol on the liquid flow images and the results are presented in Section 5.

2. Fractal analysis of 2D contours

The fractal analysis of 2D projection images of 3D objects requires three steps: elaboration of the contour
(boundary), elaboration of the Richardson–Mandelbrot plot and the interpretation of this plot.

The elaboration of the contour requires first choosing a technique appropriate to visualize the object as
accurately as possible. For mono-phase or reacting flows, light scattering (Mie) or laser induced fluorescence
(LIF) techniques can be used (Prasat and Sreenivasan, 1990; Hall et al., 1992; Lane-Serff, 1993 for instance).
Hall et al. (1992) reported identical fractal dimension of flame front obtained either by MIE or LIF image
analysis. For two-phase flows, like liquid flows in gaseous environment, fractal analysis can be performed
on light transmission images (Shavit and Chigier, 1995; Chehroudi and Talley, 2004; Dumouchel et al.,
2005b). Whatever the technique used, it must ensure appropriate temporal resolution for the object to be fro-
zen and a good spatial resolution to avoid digitalization effect in the spatial scale range of interest. Because 2D
images of 3D objects are used, the ‘‘thickness’’ of the image is an important parameter also. It corresponds to
the thickness of the laser sheet or to the depth of field according to the visualization technique. In their study
on single phase turbulent flows, Prasat and Sreenivasan (1990) reported an increase of the fractal dimension as
the thickness of the laser sheet decreases. Shavit and Chigier (1995) in their analysis of air assisted atomizing
jets found that the fractal dimension increases as the image depth of field increases. The influence of the
‘‘image thickness’’ depends on the investigation.

Another parameter to be considered here is the number of images to be treated to have a representative
temporal averaging. This number varies from a few tens to a few hundreds according to the study. The min-
imum number of images to be analyzed may vary from one situation to another and must be determined on
the basis of preliminary tests.

Second, the contour must be extracted from the images. Techniques based on the analysis of the gray level
histogram are necessary to determine the appropriate threshold that dissociates the object from the back-
ground. This step is important especially when the contrast of the image is low. Many experimental investi-
gations reported a non-negligible influence of the threshold on the fractal dimension (Sreenivasan and
Meneveau, 1986; Prasat and Sreenivasan, 1990; Sreenivasan, 1991; Hall et al., 1992; Chehroudi and Talley,
2004). They all reported a threshold range in which the fractal dimension is constant. Hall et al. (1992) defined
the physical distance corresponding to this range as the fractal thickness and recommended that the contour
should lie in this physical zone. However, Prasat and Sreenivasan (1990) found that the range of scale simi-
larity varied with the threshold and was decidedly smaller for intermediate threshold. This behavior was
reported by jet longitudinal section analyses and explained as being related to the presence of inhomogeneities
in these sections.

The final step before the analysis is the contour plot. Smith et al. (1996) and Foroutan-pour et al. (1999)
agree that fractal analysis should be conducted on skeletal images and not on silhouette images. Furthermore,
Foroutan-pour et al. recommended that the contour line should be as thin as possible, i.e., it should be a one-
pixel line.

The fractal analysis goes through the construction of the Richardson–Mandelbrot plot. In any case, mea-
suring a fractal dimension involves obtaining the slope of a line in a log–log plot (called the Richardson–
Mandelbrot plot) this being one manifestation of statistical scale similarity. This plot shows the size of the
structuring element, which is different from one technique to another, versus the number of elements needed
to describe, cover or recover the all contour. There are several methods to construct the Richardson–
Mandelbrot plot. Smith et al. (1996) classified them in two categories: the length methods and the mass
method. The length methods include the structured walk method, the box counting method, the dilation
method and the Euclidean distance mapping (EDM) method. These techniques, the name of which can change
from one work to another, are described and tested in many references (Prasat and Sreenivasan, 1990; Hall
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et al., 1992; Smith et al., 1996; Bérubé and Jébrak, 1999; Guessasma et al., 2003; Chehroudi and Talley, 2004).
Tested on closed mathematical objects (like the triadic Koch island of different orders), EDM method was
reported to be reliable and weakly sensitive to resolution (Hall et al., 1992; Bérubé and Jébrak, 1999; Guess-
asma et al., 2003). Smith et al. (1996) found that among the length methods, the dilation method was superior.
Chehroudi and Talley’s results (2004) pointed out that despite fractal dimensions depend on the methods,
their behavior is globally not affected by them.

The second category of methods is the mass method (Smith et al., 1996) or cumulative mass method (Case-
rta et al., 1995) or sandbox method (Panico and Sterling, 1995). Less used than the length methods, this tech-
nique is a variant of the box-counting method. The mass method provides more information about the fractal
object than the length method. It deals with a quantitative description of the contour and also leads to the
concept of lacunarity and multifractals (Smith et al., 1996). Smith et al. (1996) found that the mass method
usually reports higher dimensions than length methods whereas, applying the mass method and the box count-
ing method on biological patterns, Panico and Sterling (1995) obtained similar fractal dimensions.

Other parameters influence the Richardson–Mandelbrot plot, like the orientation, size and overall structure
of the object. According to the shape of the object, some orientations may accentuate or reduce the digitali-
zation effect. This is particularly the case when the contour shows straight borders (Bérubé and Jébrak, 1999).
However, Chehroudi and Talley (2004) noticed that some methods, like EDM, are more isotropic than others.
The total surface area of the object must not be too small. Bérubé and Jébrak (1999) recommended that the
minimum object area should be 10,000 pixels. As far as the overall structure of the object is concerned, Bérubé
and Jébrak (1999) noticed an increase of the fractal dimension when the object morphology is elongated. This
aspect is very important and must be taken into consideration when analyzing an object. It reflects the influ-
ence of the structural and textural fractal dimensions (Kaye, 1989). The textural fractal dimension character-
izes the tortuosity of the border of the object whereas the structural fractal dimension characterizes the overall
morphology of the object. These two dimensions characterize the object in different ranges of similarity scales.

The final step in fractal analysis consists in extracting the fractal dimension and the range of similarity
scales from the Richardson–Mandelbrot plot. Using the box counting method, Foroutan-pour et al. (1999)
suggested a procedure that identifies the two points where a slope change is observed. The fractal dimension
can then be calculated by using at least twelve points between these two points. Unfortunately, slope changes
in Richardson–Mandelbrot plots are not always easy to detect. Berntson and Stoll (1997), using the same
method to plot the Richardson–Mandelbrot graph, determined the fractal dimension with finite scale cor-
rected dimension technique. This technique consists in removing extreme points (one at the time) of the plot
until a self-similarity is found (that is a good linearity in the Richardson–Mandelbrot plot) in the remaining
spatial scales. Tested on mathematical fractals, this erosion technique was found to considerably improve the
determination of the fractal dimension. Other authors (Panico and Sterling, 1995; Guessasma et al., 1999)
measured the evolution of the local slope from the smallest to the largest scale covered by the Richardson–
Mandelbrot plot. The object is fractal if the local slope sustains a constant value over a spatial scale range
from which the inner and outer cutoff scales can be extracted.

It appears from this review that no fractal analysis technique is, a priori, better than any other since the
result depends on the method as well as on the quality of the image. Therefore, it is necessary to test several
methods on known mathematical fractals in situations that reflect situations of interest. This procedure was
the one followed by Hall et al. (1992) for the study of flame front. This is what is done in the present inves-
tigation for the case of atomizing liquid flow in a gaseous environment.

3. Elaboration of the liquid flow contours

The experimental configuration used in this work was presented in detail elsewhere (Dumouchel et al.,
2005a,b) and is summarized here only. The injection system is a simplified cavity nozzle shown in Fig. 1. It
is constituted of a superposition of three circular disks. The liquid enters the nozzle through disk 1, flows
through the cavity disk (disk 2) and discharges through the orifice in disk 3. The drastic flow deflections
imposed by the nozzle eccentricity (see Fig. 1) favors the development of a complex issuing flow structure.
At the exit section, the flow shows a double swirl as well as a consistent turbulent level. Being used at low
injection pressure (not greater than 5 bar) it was shown that the atomization efficiency was related to the



Fig. 1. The simplified compound nozzle (top: side view and coordinate system, bottom: top view).
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kinetic energy of the non-axial flow component and to the turbulent kinetic energy at the nozzle exit (Dumou-
chel et al., 2005a). Furthermore, the low Weber numbers of the issuing flow due to the use of low injection
pressures indicate the negligible role of the aerodynamic forces on the atomization process that is governed
by surface tension forces only.

In the present investigation and contrary to the previous studies (Dumouchel et al., 2005a,b), a single nozzle
is used with several liquids. Disk 1 has a thickness equal to 177 lm and a diameter hole equal to 300 lm. The
cavity disk (disk 2) is 75 lm thick and the cavity diameter is equal to 2254 lm. The discharge orifice disk (disk
3) is characterized by a thickness equal to 76 lm, an orifice hole diameter equal to 180 lm and an eccentricity
of 200 lm. In the previous investigation (Dumouchel et al., 2005a), this nozzle was the one that reported the
greatest atomization efficiency. The liquids, whose physical properties are given in Table 1, differ mainly by
their viscosity and surface tension. Each fluid is used at several injection pressures. For each experimental con-
dition, the volume flow rate is measured and the discharge coefficient CD is calculated. This coefficient is
defined by:
Table
Physic

Water
Heptan
Water/
Water/
CD ¼
Qv

S
ffiffiffiffiffiffiffi
2DP i

qL

q ð1Þ
where Qv is the volume flow rate, DPi the injection pressure, qL the liquid density and S the area of the dis-
charge orifice. For an injection pressure ranging from 1 bar to 5 bar, the discharge coefficient was found rather
independent of the liquid and of the injection pressure. Their values are given in Table 1.

The visualization of the issuing liquid flow is performed with a Fuji Digital Camera (FinePix S1 Pro, Fuji-
film, Japan) which offers a high resolution of 3040 · 2016 pixel2 and a distribution of light intensity on 256
levels for each of the three color frame components (red, green, blue). A Nanotwin Flash System (HSPS)
1
al properties of the liquids and discharge coefficients

qL (kg/m3) l (kg/m s) r (N/m) CD (–)

984 1.00 10�3 0.0720 0.63
e 704 0.41 10�3 0.0206 0.63
glycerol (5%) 1012 1.33 10�3 0.0704 0.63
glycerol (10%) 1030 1.43 10�3 0.0702 0.61
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was used to enlighten the liquid flow. This light source produces short light flashes (�11 ns). The light source,
the liquid flow and the camera were aligned in a backlight image configuration. The light intensity was con-
centrated on the liquid flow by a 140 mm focal length lens. The field of visualization covered a 10.5 · 7 mm2

area corresponding to a spatial resolution of 3.5 lm/pixel. According to the discharge coefficient and to the
range of injection pressures, the maximum flowing velocity of the issuing liquid flow is of the order of
25 m/s. The corresponding displacement during the flash duration is equal to 0.25 lm. It is far less than
the spatial resolution. Thus, the issuing liquid flows are well frozen. Finally, the depth of field of the imaging
configuration has been measured. It is equal to 7 mm. It was reported (Dumouchel et al., 2005b) that the flow
issuing from the nozzle does not keep the axisymmetry of the discharge orifice but spreads in the (0,x,z) plane
(see Fig. 1 for coordinate system) and that the disintegration process is organized in this plane. In the follow-
ing, flows are visualized and analyzed in this plane only. Thanks to this configuration, the depth of the flow is
less than the image depth of field. Thus, all the flow structures are visualized with a good contrast. This can be
seen in Fig. 2 that shows examples of visualizations obtained for an injection pressure of 3.5 bar for the four
liquids.

The fractal analysis we intend to perform concerns the continuous liquid flow only. Detached droplets and
ligaments are not taken into account and are removed from the image. The analyzing technique to detect the
continuous flow contour from the images was improved compared to the previous investigation (Dumouchel
et al., 2005b). It was conducted on the blue frame of the images since its 256 gray level distribution reported
the largest dynamics. This distribution showed a main peak corresponding to the background pixel popula-
tion. The liquid-pixel gray-level distribution covers the all level dynamics because of light scattering effects.
A double-threshold technique was applied to dissociate liquid and background pixels. Two thresholds are
Fig. 2. Examples of liquid flow images (DPi = 3.5 bar, a, water; b, heptane; c, water–glycerol 5%; d, water–glycerol 10%).
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selected on each side of the gray-level distribution main-peak: gray levels between these thresholds represent
background pixels and are attributed the level 255 (white), the others represent liquid pixels and are attributed
the level 0 (black). The good contrast of the images ensured a limited influence of the thresholds of the liquid–
gas interface determination. An example of application of the double threshold technique is shown in Fig. 3.
Fig. 3a shows the initial image (detail) and Fig. 3b the corresponding two-gray level image obtained after the
double threshold technique. However, it can be noticed that a non-negligible amount of liquid pixels have
been interpreted as background ones. This problem is mainly observed at the bottom of the continuous liquid
flows where thin liquid lamella are present. These pixels increase the amount of liquid–gas interface (see
Fig. 3b) and the corresponding external boundary of the liquid flow shows additional and pretty tortuous con-
tour (see Fig. 3c). This additional contour might affect the fractal analysis and it was minimized by applying a
dilation-erosion step before the contour detection.

The dilation-erosion is a two step procedure. First, a dilation of the object is performed on the two gray
level image (Fig. 3b). This step consists in replacing each white pixel with at least one black neighbor by a
black pixel. Each gap that is one or two pixels wide is filled. Second, an erosion step is applied to compensate
the influence of the dilation on the external liquid flow boundary. This step consists in replacing each black
pixel with at least one white neighbor by a white one. This does not reopen the small gaps filled during the
dilation step. The result of the dilation-erosion step is illustrated in Fig. 3d and e that show the two-gray level
image and the corresponding external contour, respectively. This example illustrates to which extend the prob-
lem of additional external interface creation is reduced.

The final step of the image analysis is the external contour detection. Foroutan-pour et al. (1999) recom-
mended that fractal analysis should be conducted on skeletal images. This recommendation has been followed
and will be discussed later.
Fig. 3. Illustration of the extra contour detection due to light transmission and of the improvement due to the dilation-erosion step (a,
initial image; b, binarized image; c, contour detection from image b, d, application of the dilation-erosion step on image b, e, contour
detection from image d).
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As done in previous investigations (Shavit and Chigier, 1995; Dumouchel et al., 2005b), we are interested in
the determination of the local fractal dimension in order to investigate its evolution from the nozzle exit to the
end of the primary atomization process. To achieve this, the fractal dimension was determined on portions of
the liquid flow delimited by an analyzing window that is 256 pixels in height (896 lm) and as wide as the
image. Thus, the objects we want to analyze are contour parts more or less close to each other according
to the distance from the nozzle. They are very different to the objects analyzed in all the studies enumerated
in the previous section and which were closed contours. Thus, before conducting the fractal analysis, three
fractal methods were tested on synthetic images of ‘‘open’’ mathematical objects. This is presented in the next
section.
4. Tests of fractal analysis methods

Three fractal analysis methods were tested; the minimum grid counting method (MGC), the Euclidean dis-
tance mapping method (EDM) and the mass method (MM). These techniques are introduced in Appendix A.
They report a different Richardson–Mandelbrot plot as illustrated in Fig. 4 for a natural fractal object with a
fractal dimension equal to d in the range of cutoff scales [rinn; rout]. Within this scale interval, the slope of the
Richardson–Mandelbrot plot is a function of the fractal dimension and of the method used (see Eqs. ((A.1)–
(A.3))). Thus, the determination of the fractal dimensions requires the identification of the linear regions in the
Richardson–Mandelbrot plot. In the present work, the local slope graph technique introduced by Panico and
Sterling (1995) is used. It consists in calculating linear regression over a window containing a limited number
of consecutive points in the Richardson–Mandelbrot plot and in plotting the local slope as the window slides
over the entire scale range. If no region with a constant local slope is reported, the object is not fractal. In the
present work, local linear regression are performed over seven consecutive points in the Richardson–Mandelb-
rot plot. As noted by Panico and Sterling (1995), we observed that smaller intervals for local slope calculation
increased the noise but did not affect the apparent linearity in Richardson–Mandelbrot plots. In order to facil-
itate the comparison between the three methods, the local slope plot reports the corresponding local fractal
dimension. This is illustrated in Fig. 5 that shows the local slope graph corresponding to the three Richard-
son–Mandelbrot plots presented in Fig. 4.

The three fractal analyzing methods were tested for the set of synthetic images shown in Fig. 6. These
images have the same size of the analyzing window that will be used to apply local fractal analysis on the liquid
flow contour, i.e. 257 · 2016 pixel2. Each image contains one or two portions of a mathematical line with
known fractal properties. Image 1 contains a single vertical straight line positioned in the middle of the image.
Fig. 4. Richardson–Mandelbrot plots of a natural fractal with scale similarity between rinn and rout as a function of the method (local
slope are indicated in the squares).



Fig. 5. The local slope graph for a natural fractal whose Richardson–Mandelbrot plots are shown in Fig. 4.

Fig. 6. The synthetic images.
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The fractal dimension of this object is 1. Image 2 is an inclined single straight line with an inclination angle of
15�. The fractal dimension of this object is also equal to 1. However, the analysis of Image 2 will quantify
image digitalization effect. Image 3 contains two parallel straight lines. The distance between the two lines
is equal to 100 pixels. The analysis of this image will illustrate the influence of the presence of two contour
portions on the determination of the fractal dimension. Image 4 contains a portion of a 5-order triadic Koch
coast line. The Koch line is a linear (or ideal) fractal often used in the literature to test fractal methods (Bérubé
and Jébrak, 1999; Guessasma et al., 2003; Panico and Sterling, 1995; Smith et al., 1996). It results from an
absolute generating process with a known construction rule. Its fractal dimension is analytical and close to
1.2618. The portion of Koch coast line in Image 4 is inclined. Finally, Image 5 contains two portions of a
5-order triadic Koch coast line.

The three fractal methods described in Appendix A are applied on the synthetic images. For the MGC
method, the size r of the square elements varies from 1 to 257 pixels, and the EDM method is applied with
an interval of brightness level r ranging from 1 to 128 pixels. The MM method is local and requires defining
contour pixels as centering sites. It is important that the size r of the structuring element varies in the same
interval for each pixel centering site. To satisfy this requirement, the centering sites are the pixels of the con-
tour intercepting the middle line of the analyzing window and the square size varies from 1 to 257 pixels, tak-
ing only the odd values to make sure that the centering sites is always the middle point of the square. The
symmetry of Images 1, 2 and 3 renders unnecessary a statistical approach and the three methods are applied



Fig. 7. Local slope graphs of Image 1 obtained with the three fractal methods.
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on a single image each time. However, they are applied on 150 images for Images 4 and 5, each image showing
a different part of the Koch coast line but equivalent in size. The Richardson–Mandelbrot graphs are plotted
with the average of the numbers N(r) obtained for each image.

Fig. 7 shows the local slope graphs obtained with the three methods for Image 1. It can be seen that over the
whole spatial scale range both the EDM and MM report a constant local slope equal to 1. Bearing in mind
how the local slope graph is built (see Fig. 5), this result shows that both methods find the correct fractal
dimension. However, the result reported by the MGC method is drastically different. For spatial scales less
than 30 pixels, the local slope is constant and equal to the expected fractal dimension 1. Above this length
scale, the local slope reported by the MGC shows large and unorganized variations. This pejorative behavior
is due to a scale range of the grid square elements inappropriate to the size of the image. Indeed, Foroutan-
pour et al. (1999) recommended that the maximum box size in box counting methods should not exceed 25%
of the smallest size of the image. If not very poor information is returned by the method. The results obtained
for the other synthetic images confirm the poor appropriateness of the MGC method for the type of images
analyzed in the present work. Thus, results presented in the following concentrate on the two other methods
only.

Fig. 8 presents the Image 2 local slope graphs obtained with EDM and MM. This figure shows that the
MM method is not at all affected by the digitalization of the object whereas it slightly modifies the result
Fig. 8. Local slope graphs of Image 2 obtained with EDM and MM.



Fig. 9. Local slope graphs of Image 3 obtained with EDM and MM.
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returned by EDM. This is mainly observable at small spatial scales where digitalization is interpreted as tor-
tuosity. Thus, the fractal dimension is overestimated in this region. However, the EDM method globally
reports a very acceptable value of the fractal dimension if the behavior at very small spatial scales is disre-
garded. Fig. 9 shows the Image 3 local slope graphs reported by EDM and MM. For both methods, the pres-
ence of two contour portions has a similar effect, which is an increase of the local slope at a given spatial scale
that depends on the method. When the image is analyzed at small scales, both lines are independently analyzed
and both methods report a fractal dimension equal to 1. However, at a given spatial scale r, the two line por-
tions are seen as a single object inducing a sudden increase of the number N(r) and, consequently, of the local
slope. Since the two lines are 100 pixels apart, this increase is observed at r = 100 pixels and 200 pixels for
EDM and MM, respectively. This difference is directly related to the definition of the scale r for each method
(see Eqs. (A.2) and (A.3)). For larger scales, the MM local slope goes back to the value of 1. The width and
height of the MM local slope peak reported in Fig. 9 are functions of the point interval used for the local slope
calculation and are not physically relevant. For large scales the EDM local slope keeps an almost constant
value suggesting the existence of a fractal dimension greater than 1 for this range of scales. This fractal dimen-
sion is physically meaningful and characterizes the structure of the object made of two parallel line portions
Fig. 10. Local slope graphs of Image 4 (top) and Image 5 (bottom) obtained with EDM and MM.



Fig. 11. Influence of the number of images on the local slope graphs for Image 4 obtained with EDM (top) and MM (bottom).
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and that has a certain spatial covering capacity. Thus, contrary to the MM, EDM characterizes an object by
its textural and structural fractal dimensions as defined by Kaye (1989) and introduced in the previous section.

Finally, the results obtained for Images 4 and 5 are presented in Fig. 10. As explained above, the local slope
graphs for these images result from the analysis of 150 images of different portions of the Koch coast line. For
the single Koch coast line portion (top of Fig. 10), the results show the very good behavior of EDM that
returns a fractal dimension equal to the expected value of 1.26 constant over the whole spatial scale range.
The result provided by the MM does not report a constant local slope whatever the scale range and suggests
that the contour in Image 4 is not fractal, which is incorrect. The results obtained from the analysis of the
double Koch coast line (bottom of Fig. 10) lead to similar conclusions. For spatial scales lower than 100 pix-
els, which corresponds to the smallest distance between the two lines, EDM reports a constant local slope that
is equal to the fractal dimension of the contour. For greater spatial scales, EDM reports a greater constant
local slope characterizing the structure of the whole object. Whatever the range of spatial scales, the MM does
not return such information and appears inappropriate.

The pejorative behavior of MM compared to EDM can be understood as follows. EDM analyzes the whole
contour in the image at the same time whereas MM performs a local analysis on a limited number of pixels
those used as centering sites. To improve the MM performance, one has to increase the number of centering
sites by increasing the number of images. This is illustrated in Fig. 11 that compares EDM and MM local
slope graphs obtained for several sets of Image 4. It can be seen in this figure that the number of images con-
siderably influences the results returned by MM, which is not the case for EDM. Indeed, the result obtained
from the analysis of 6000 images with MM is not better than the one obtained from the analysis of a single
image with EDM. Thus, the use of MM is definitely not appropriate to analyze liquid flow contours because of
the excessive number of images it requires. On the other hand, it is interesting to note that EDM gives an
acceptable result even from the analysis of a single image. This characteristic feature of this technique is used
in the analysis of atomizing liquid flow contours presented in the next section.
5. Application to atomizing liquid flows

In Fig. 12, an example of the analysis of a single image is presented (water, DPi = 4 bar). The figure shows
the image and its contour where the top short-dash rectangle schematizes the analyzing window (AW) that
delimits contour portions to be analyzed by EDM. The AW has the same dimension as the synthetic images
and its position is noticed by the distance h between the nozzle exit plane and the AW middle line. During the
analysis, the AW is slid from the top of the liquid flow (h = 0.7 mm) to the distance h = hBU corresponding to



Fig. 12. Image of water flow at DPi = 4 bar (top right) and corresponding contour (top left: the short-dash rectangle indicates the
257 pixels AW positioned at h = 0.7 mm and the dash-point rectangle indicates the 512 pixels AW positioned at h = hBU) and the local
slope graphs as a function of the AW position (bottom).
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the position where the contour pixel farthest from the nozzle lies on the bottom line of AW. hBU varies from
one image to another.

Fig. 12 reports the EDM local slope graphs obtained at several positions h. These graphs show a clear evo-
lution with the distance from the nozzle with constant local slopes allowing the definition of local fractal char-
acteristics. Near the nozzle, (h = 0.7 mm and 1.4 mm) a textural fractal dimension is obtained in the scale
range [250 lm, 550 lm]. For greater spatial scales, the local slope increases due to the presence of the two con-
tours and goes toward the description of the structure of the whole liquid flow. For intermediate distances
(h = 2.1 mm and 2.8 mm), the local slope graphs show two regions of constant value: one corresponds to
the local textural fractal dimension and the other one to the local structural fractal dimension. Finally, for
the greatest distances, the local slope increases and reaches a constant value for spatial scale greater than
400 lm. The corresponding fractal dimension characterizes the structure of the flow that has reorganized as
a ligament network at this stage.

The general behavior described by the local slope graph shown in Fig. 12 is the following. As soon as the
liquid issues from the nozzle, the flow begins to distort but deformations are localized on the flow boundary
only and have small characteristic spatial scales. These initial deformations are described by a local textural
fractal dimension. After this first step, important deformations of the bulk flow appear with production of
liquid gulfs and ligaments. At this stage, the deformations of the flow boundary and of the whole flow are
described by a textural and a structural fractal dimensions, respectively. Finally, due to vivid action of surface
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tension forces, the bulk flow reorganizes as a network of ligaments with rather smooth boundaries. This final
liquid shape is described by a structural fractal dimension. The increase of the local textural fractal dimension
in the first and middle regions and of the local structural fractal dimension in the middle and last flow distor-
tion regions are representative of the increase of local interface surface area due to deformation growths. Fur-
thermore, the spatial evolution of each fractal dimension spatial scale range gives information on the
perturbation length scales that dominates the flow distortion process.

The results shown in Fig. 12 confirm also that atomizing liquid flows are fractal objects. This does not nec-
essarily mean that liquid atomization is a fractal process. This latter statement would require constant local
fractal characteristics during the process. To study this point, the same analysis as the one shown in
Fig. 12 was performed on a series of 150 images. For each image, the textural fractal dimension near the nozzle
(h = 0.7 mm) and the structural fractal dimension of the ligament network in the last flow distortion region
(h = hBU) were measured. For the measurement of the structural fractal dimension the AW was enlarged
up to 512 pixels (1.79 mm) in order to embrace all the ligament network. This AW is shown in the contour
in Fig. 12 (dot-dash box at hBU). For each image, the textural fractal dimension was measured as the average
of the local slope in the spatial scale range [250 lm; 430 lm] and the structural fractal dimension was deter-
mined as the average of the local slope in the spatial scale range [390 lm; 700 lm]. These measurements are
reported in Fig. 13 that shows the textural and structural fractal dimension distributions. Both distributions
display a rather Gaussian shape. As explained by Smith et al. (1996) the width of these distributions is partly a
consequence of the use of finite digitized images that introduces fractal dimension variation. Furthermore, in
the present work, it is believed that these widths are also overestimated by the experimental protocol. First, to
reduce the analysis time, each fractal dimension was determined as an averaged local slope over a constant
spatial scale range. However, the intermittent character of liquid atomization because of the role of turbu-
lence, probably modifies this range from one image to another. Second, the use of a constant AW height
for the measurement of the structural fractal dimension is also a source of error. The ligament network does
not have the same size from one image to another and might not even be connected to the continuous liquid
flow in some images. A preliminary sort of the images would have reported narrower distribution. However,
the Gaussian shape of both distributions reported in Fig. 13 leads to the conclusion that liquid atomization
can be considered as a fractal process and, most of all, that average fractal dimensions are relevant and should
be physically representative. To emphasize this point, local average fractal dimensions were studied as a func-
tion of other liquid flow characteristics.

Average textural fractal dimensions dT at the nozzle exit were measured for all the fluids tested at several
injection pressures. These measurements are presented in Fig. 14 as a function of the issuing liquid flow
Fig. 13. Probability distributions of the initial textural fractal dimension and of the ligament network structural dimension (Water,
DPi = 4 bar).



Fig. 14. Correlation between the textural fractal dimension measured at h = 0.7 mm and the issuing flow Reynolds number (all fluids, all
injection pressures).
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Reynolds number Re based on the discharge orifice diameter and on the issuing mean velocity. Whatever the
working conditions, Fig. 14 shows a single correlation between dT and Re of the form:
Fig. 15
pressu
dT / Re0:16 ð2Þ
As found in previous investigations (Dumouchel et al., 2005a,b), the initial liquid flow deformation is due to
the liquid flow turbulent level that is mostly represented by the Reynolds number. Fig. 14 confirms this finding
and shows the physical relevance of the initial textural fractal dimension dT. Furthermore, the increase on dT

with Re demonstrates that an increase of turbulence favors greater interface tortuosity and area production.
Similarly, average structural fractal dimensions dS of the ligament network were also measured. They are

plotted in Fig. 15 as a function of the liquid Weber number WeL of the flow based on the liquid density, the
discharge orifice diameter and the issuing mean velocity. Once again, a single correlation between dS and WeL

is obtained:
dS / We0:04
L ð3Þ
. Correlation between the structural fractal dimension of the ligament network and the liquid Weber number (all fluids, all injection
res).



Table 2
Examples of atomization patterns for the ranges of Reynolds and liquid Weber numbers covered in the present study

Visualizations

Re(�)/dT(�) 2065/1.05 3653/1.20 6125/1.28
WeL(�)/dS(�) 670/1.45 1061/1.49 2417/1.53
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As said above, the gaseous Weber number of the liquid flow is small enough to expect the flow distortion to be
governed by surface tension forces only. Thus, the structural fractal dimension that characterizes the final
liquid flow shape is a unique function of a parameter representative of surface tension effects like the liquid
Weber number.

To enhance the relevance of dT and dS it is interesting to note that the atomizing liquid flow report rather
different patterns for the working conditions covered in this study. This is illustrated in Table 2 where visu-
alizations for small, intermediate and large values of Reynolds and liquid Weber numbers are shown.

These results show that the fractal dimensions measured by EDM are appropriate characteristics to
describe the complex shape of atomizing liquid flows. However, the information brought by fractal dimensions
is qualitative and will never be sufficient to fully study and predict primary atomization processes. Quantita-
tive information such as characteristic length scales of deformation are required if the objective is to determine
information related to drop size distribution. It is believed that a fractal analysis can bring such information.
To illustrate this, we consider the inner cutoff scale rinn of the textural-deformation scale-range of the liquid
flow just after the nozzle exit. As shown in Fig. 12, this scale increases when the distance from the nozzle
increases up to h = 2.1 mm. As a first approximation rinn was estimated as the smallest scale at which the local
slope equals the average local textural fractal dimension dT. This estimation was performed as a function of
the fluid and the injection pressure and for a distance h ranging from 0.7 mm to 2.1 mm. To study the rele-
vance of this scale, it was compared to a typical surface-tension length-scale ar introduced by Dumouchel
et al. (2005b) and defined as follows. For a liquid ligament characterized by a length scale ar and subject
to a capillary instability, the characteristic break-up time tr is given by Rayleigh (1879):
tr ¼
1

0:343

ffiffiffiffiffiffiffiffiffiffi
qLa3

r

r

r
ð4Þ
Equating this time to the time t elapsed from the beginning of the injection allows the greatest scale controlled
by surface-tension forces to be estimated. Since this analysis is limited to the first millimeters downstream the
nozzle, the elapsed time t can be calculated by:
t ¼ h
V q

ð5Þ
which leads to the following expression for the greatest scale controlled by surface tension forces:



Fig. 16. Correlation between the inner cutoff scale and the cubic of surface tension characteristic length scale.
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Fig. 16 shows the measured rinn versus the distance h (expressed as ðh2r=C2
DDP iÞ) for water and heptane at

several injection pressures. All points gather as a unique behavior. Considering the rather wide variations
of surface tension and injection pressure as well as the unsophisticated procedure to estimate rinn, the result
shown in Fig. 16 is rather convincing all the more so since the slope of the mean regression line shown in
the figure is equal to 0.23, which is of the same order of magnitude as the exponent 1/3 given by Eq. (6). Thus,
the inner scale determined thanks to the fractal analysis corresponds to a surface tension characteristic length
scale. This result suggests us to define the following non-dimensional group Dr by:
Dr ¼
r3

innC2
DDP i

h2r

� �1=3

ð7Þ
For all the cases shown in Fig. 16, Dr was calculated. It is presented in Fig. 17 as a function of the distance h

from the nozzle. It is interesting to note that for each working condition, this number is constant during the
first stage of the atomization process. Furthermore, it can be seen that the points do not scatter that much
Fig. 17. Evolution of the number Dr (Eq. (6)) with the distance from the nozzle (same legend as in Fig. 16).



Fig. 18. The three representation modes of the same object (left: contour image, middle: silhouette image, right: shadow image).
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around the mean value of Dr equal to 1.6. Thus, the number Dr allows the smallest perturbation scale to be
estimated at the beginning of the atomization process. Eq. (7) indicates that this scale increases when the sur-
face-tension or the distance increases or when the injection pressure decreases. This result shows to which ex-
tend fractal analysis of primary atomization process could provide physical insights for model development.

The results presented so far show that fractal analysis can be a powerful approach to analyze and study
primary liquid atomization. However, it must be kept in mind that preliminary investigations are required
to define the best possible protocol. Experimental aspects concerning the image generation must be considered
as well as methodological aspects as far as image analyzing technique and fractal analysis method are con-
cerned. Among the option related to the fractal analysis step, the one concerning the best object representation
mode is worth to be discussed. Following Foroutan-pour et al. (1999) suggestion, the contour of the object
was analyzed in the present approach. Two other alternatives are available: the silhouette and shadow repre-
sentation modes. The three possible modes of representation are shown in Fig. 18. The application of EDM on
these three representation modes does not lead to the same result since EDM analyses the part of the image
covered by white pixels only. An example of the results obtained as a function of the representation mode is
displayed in Fig. 19. This figure reports the local slope graphs for the three images shown in Fig. 18 with the
AW positioned at h = 0.7 mm. It can be observed that although the three graphs report similar behavior in the
small spatial scale range, very different results are obtained in the great spatial scale range. This difference
comes from the fact that the system that is analyzed depends on the representation mode. When using the
contour image, EDM is unable to dissociate liquid structure scales from gaseous structure ones. The result
Fig. 19. Local slope graphs for the three representation modes shown in Fig. 18 (h = 0.7 mm).
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provided by the contour analysis is a function of the liquid structure density in the gaseous environment. From
this point of view the application of EDM on contour can be seen as ‘‘two-fluid’’ shape analysis. On the other
hand, the use of the two other representation modes can be seen as ‘‘single-fluid’’ shape analyses. The use of
silhouette images gives information on the liquid system only whereas analysis of shadow images describes the
gaseous boundary only. It can be seen in Fig. 19 that within the small spatial scale range (<500 lm) the anal-
yses of the three images give similar local slope graphs. This indicates a similitude of the deformations seen
from either side of the boundary. In other words, scales of the liquid deformations are of the same order
of magnitude as the scales between liquid deformations.

Fig. 19 shows however that within the large spatial scale range a sharp increase of the local slope is found
from the contour and silhouette analyses, behavior that is not reported from the analysis of the shadow image.
When the observation scale increases on the shadow image, the tortuosity of the gaseous boundary is less and
less space covering inducing a continuous decrease of the local slope. For the two other representation modes
that depend on the liquid flow, the local slope increases when the observation scale is of the order of the flow
width. With the contour image, the increase lasts until the local slope reaches a rather constant value of the
order of 1.5 here. As mentioned earlier, this value corresponds to the structural fractal dimension of the liquid
flow and gives information on its propensity to fill space. However, the increase found from the silhouette
image does not stop until the limit value of 2 is reached. This is a characteristic feature of the use of such
image. The spatial scale for which the local slope is 2 is the minimum scale required to cover the entire surface
represented by the liquid flow. This scale is a function of the shape of the flow. Indeed, the more elongated the
flow, the smaller this minimum scale. Therefore, silhouette image analysis gives information on the spatial
scale distribution that composes the liquid flow shape.

Fig. 20 presents another comparison of the local slope graphs according to the object representation mode.
It corresponds to the analyses of the images shown in Fig. 18 but with h = hBU. It is interesting to note that as
far as the analysis of the ligament network is concerned, the three approaches lead to different results even
within the small spatial scale range. As it can be noted in Fig. 18, small spatial scales are much more present
in the liquid medium than in the gaseous one. Finally, it can also be noted in Figs. 19 and 20 that the results
obtained from the analysis of the contour mode is always comprises between those obtained from the analyses
of the two other modes. Therefore, the use of contour images is a more complete approach since it gives infor-
mation on the spatial scale distribution in the liquid flow as well as on the spatial scale distribution between
the liquid structures in the gaseous medium. This last point is in connection with what the spatial density of
the spray will be. However, although the information reported by contour image analysis is complete, it is
difficult to be dissociated and it is believed that, as a first approach, the analysis of silhouette images may
bring very informative results especially if spray drop-size distribution wants to be determined without any
consideration on spray density.
Fig. 20. Local slope graphs for the three representation modes shown in Fig. 18 (h = hBU).
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6. Conclusion

One of the most important conclusions of the work reported in this paper is that the relevance of the use of
fractal concept to study liquid primary atomization process has been demonstrated. Many factors explain the
appropriateness of this approach.

A fractal analysis consists in studying the shape of objects that can be achieved only if accurate images can
be caught. The advantage of the present target application is that two-phase flow images with a great contrast
can be achieved by using a backlight configuration set-up. Images with good contrast are required to expect
the success of a fractal analysis. This ensures a wide fractal thickness in terms of gray levels and an image bina-
rization step less influenced by the choice of the thresholds. Image contrast is greater if the thickness of the
object is less than the thickness of the image. This condition is easily satisfied for the study of small liquid jets.
A good temporal resolution also increases the image contrast. The light sources available today allow this
requirement to be satisfied in a wide range of working conditions.

The disadvantage of liquid flow imaging in a backlight configuration is the presence of inappropriately
deviated photons by light transmission. However, sophisticated image analyzing tools, like the dilation-ero-
sion procedure used in the present approach, are available to minimize the pejorative influence of transmitted
light on the contour detection.

Fractal approach in primary atomization investigation is also relevant because, as demonstrated here, an
atomizing liquid flow is a natural fractal object and liquid atomization is a fractal process. This conclusion
results from the use of an appropriate fractal analysis method, EDM, tested among three. A grid technique
was found inappropriate because the limited height of the AW, whose purpose was to conduct local analysis,
considerably reduces the possible grid spatial scale range towards the small scales. The Mass Method was
found inappropriate because of the prohibitive number of images it requires.

EDM was definitely the best method for the present objectives. Besides the advantages already mentioned
by previous workers (reliable, weakly sensitive to resolution, more isotropic) it was found that single image
analysis is possible with EDM, that textural and structural information of the object is available and that this
information is physically representative. For instance, it was found that the initial textural fractal dimension is
a unique function of the issuing flow Reynolds number and that the final structural fractal dimension is a
unique function of the liquid Weber number illustrating the dominant action of surface tension in the present
situation. Furthermore, representative length scales were derived from the analysis and led to the definition of
a number Dr that is constant during the initial textural interface deformation.

Finally, by testing EDM on three representation modes of the same object, it has been emphasized that the
application of this technique on contour images must be seen as a ‘‘two-fluid’’ shape analysis. The information
it reports concerns indifferently liquid structure and gaseous structure length-scales. Although such informa-
tion is related to characteristic fractal dimensions and is rather complete, it is believed that its use is compli-
cated as the dissociation according to the phase is not possible. From this point of view, it has been found that
EDM analysis conducted on what we referred here as silhouette images could provide a more usable informa-
tion of the object. This ‘‘single-fluid’’ shape analysis reports a distribution of the spatial scales constituting the
object. The advantage of such approach is that it can be easily applied on spray images reporting information
on the drops regardless their spatial density.

Appendix A

This appendix introduces the three fractal analysis methods tested in this work.

A.1. Minimum grid counting method (MGC)

The MGC method is a length method deriving from the box counting method that consists in superimpos-
ing a regular grid of square elements of size r on the image, and in counting the number N(r) of square ele-
ments intersecting the contour. The Richardson–Mandelbrot plot showing the number N(r) as a function of
the scale r under a logarithmic scale, reports a linear part satisfying the relation:
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NðrÞ ¼ Kr�d ðA:1Þ

where K is a constant, if the contour is fractal with the fractal dimension d. This technique was used by Shavit
and Chigier (1995). As pointed out by Foroutan-pour et al. (1999), Panico and Sterling (1995) and Dumouchel
et al. (2005b), N(r) depends also on the grid position. Foroutan-pour et al. (1999) noted that the strict estima-
tion of a fractal dimension value requires the minimum box covering whereas Panico and Sterling (1995) and
Dumouchel et al. (2005b) worked with numbers N(r) averaged on a high number of grid positions. These two
approaches leads to a different result. The influence of the grid position on N(r) becomes more significant as
the scale r increases. For a scale equal to 1 pixel, a single grid position exists and both techniques report the
same N(r) that is equal to the number of pixels constituting the contour. But for large scale the average num-
ber N(r) is always greater than the minimum one and, according to Eq. (A.1), the average counting reports a
smaller fractal dimension than the minimum counting. This might explain why the average counting may
report fractal dimension less than 1 for contour lines barely tortuous as observed by Triballier (2003). To
avoid this problem, it was decided here to use the minimum number N(r) for each scale and to refer to this
approach as the minimum grid counting method (MGC).

A.2. Euclidean distance mapping method (EDM)

Often classified in the sausage method, the EDM method was called the area method by Hall et al. (1992)
and was used by Bérubé and Jébrak (1999) and by Chehroudi and Talley (2004). Each pixel of the image is
given a gray level equal to the number of pixels corresponding to the shortest distance between this pixel
and the contour. The Richardson–Mandelbrot graph plots the number N(r) of pixels with a brightness less
or equal to r as a function of (2r + 1) in a logarithm scale. This is equivalent to measuring the area, in pixels,
of a ribbon of width 2r + 1 along the interface. The description of the fractal contour with this technique
reports a linear Richardson–Mandelbrot plot with a slope function of the fractal dimension, namely:
NðrÞ ¼ Kð2r þ 1Þ2�d ðA:2Þ
where K is a constant.

A.3. Mass method (MM)

The third method is the mass method (MM) described by Caserta et al. (1995), Panico and Sterling (1995)
and Smith et al. (1996). A pixel belonging to the contour is chosen as a centering site. In the present approach,
square boxes of size r are centered on it and the total number of black pixels N(r) falling within the square is
counted. The Richardson–Mandelbrot graph plots the number N(r) as a function of r in a logarithm scale. For
a fractal object, this plot is linear and the fractal dimension d is given by:
NðrÞ ¼ Krd ðA:3Þ

where K is a constant. For a given object, the procedure must be repeated using each contour pixel belonging
to a limited region as centering site. This region is delimited by the gyration radius (Panico and Sterling (1995),
Smith et al. (1996)). The fractal dimension of the object is the average of the results obtained at each contour
pixel belonging to the gyration region. In the present paper, the application of the MM is performed using as
centering sites contour pixels belonging to the central pixel line of the analyzing window only but this, for a
large number of images.
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Dumouchel, C., 2005, Experimental analysis of a liquid atomization process at low Weber number. In: ICHMT International Symposium,

6th–10th June 2005, Antalya, Turkey.
Dumouchel, C., Cousin, J., Triballier, K., 2005a. On the role of the liquid flow characteristics on low Weber number atomization

processes. Exp. Fluids 38, 637–647.
Dumouchel, C., Cousin, J., Triballier, K., 2005b. Experimental analysis of liquid–gas interface at low Weber number: interface length and

fractal dimension. Exp. Fluids 39, 651–666.
Faeth, G.M., Hsiang, L.-P., Wu, P.-K., 1995. Structure and breakup properties of sprays. Int. J. Multiphase Flow 21, 99–127.
Foroutan-pour, K., Dutilleul, P., Smith, D.L., 1999. Advances in the implementation of the box-counting method of fractal dimension

estimation. Appl. Math. Comput. 105, 195–210.
Guessasma, S., Montavon, G., Coddet, C., 2003. On the implementation of the fractal concept to quantify thermal spray deposit

characteristics. Surf. Coat. Technol. 173, 24–38.
Hall, M.J., Wengang Dai, Matthews, R.D., 1992, Fractal analysis of turbulent premixed flame images from SI engines. SAE Technical

Paper 922242.
Hunt, J.C.R., Vassilicos, J.C., 1991. Kolmogorov’s contribution to the physical and geometrical understanding of small-scale turbulence

and recent developments. Proc. R. Soc. Lond. A 434, 183–210.
Kaye, B.H., 1989. A Random Walk Through Fractal Dimensions. VCH, New-York.
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